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waves in a non-uniform flow

O. V. ATASSI
University of Seville, Seville, Spain 41092 and Pratt & Whitney, East Hartford, CT 06108, USA

(Received 27 July 2005 and in revised form 7 September 2006)

The evolution of disturbances in an annular duct with a non-isentropic radially varying
mean flow is studied. Linear and nonlinear analyses are carried out to examine how
the mean velocity and density gradients affect the stability and coupling between the
disturbances. To isolate the effect of the mean-velocity gradients from that of
the mean-density gradients two mean flows are considered, one with a Gaussian
density profile and a uniform axial velocity and the other with Gaussian density
and Gaussian axial-velocity distributions. For small-amplitude disturbances with the
former mean flow profile, the vortical disturbances convect with the mean flow and
density fluctuations grow linearly in space as a result of the interaction of the
mean-density gradient with the disturbance radial velocity. Eigenmode analysis of
the latter profile shows that unstable modes with exponential growth occur owing to
the inflection point in the mean-velocity profile. These modes are almost independent
of the mean-density profile and are most unstable for low azimuthal wavenumbers.
Nonlinear solutions support the linear results and show an algebraic growth of the
density for a range of azimuthal wavenumbers and both uniform and non-uniform
mean-velocity profiles. The growth of the velocity fluctuations, however, is strongly
dependent on the azimuthal wavenumber of the incident disturbance and the mean-
velocity profile. The largest growth in the disturbance is observed at radial locations
where the largest mean-flow gradients exist. Owing to the growth of the density
fluctuations, coupled vorticity–entropy waves are observed downstream of a forced
harmonic excitation in a non-isentropic flow. The forcing amplitudes of the incident
waves were varied to see how the solutions change with amplitude. As the amplitude
is increased, the waves continue to grow and a steepening of the gradients is observed
as they propagate downstream until eventually very sharp density and velocity fronts
form. These results show that the mean-flow and density profiles play an important
role in the evolution of low-azimuthal-wavenumber disturbances which can couple
strongly to the duct acoustic modes during combustion instabilities.

1. Introduction
In a combustor or an augmentor, where the flow is heated, the temperature is not

uniform but instead varies significantly across the radius of the duct. These radial
variations in temperature produce entropy waves which convect downstream and
couple with the vorticity disturbances. While the coupling, growth and propagation of
these waves are interesting in their own right, some of the energy can be converted into
acoustic energy resulting in strong coupling between acoustic, vorticity and entropy
waves and combustion instability. As a preliminary step towards studying combustion
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instability, we study the propagation and coupling of entropy and vorticity waves
propagating in a duct with a non-uniform mean flow.

The evolution of small-amplitude disturbances in a uniform mean flow is
well understood (Kovàsnznay (1953)). In this case, disturbances of the linearized
Euler equations can be split into independent acoustic, vortical and entropic
disturbances. This has also formed the basis for formulating inflow–outflow boundary
conditions in numerical schemes since independent conditions can be written for
each independent disturbance. When the mean flow is non-uniform, however, the
acoustic and vortical disturbances are coupled (Kerrebrock 1977; Golubev & Atassi
1998), making the distinction between what is an acoustic disturbance and what
is a vortical or entropic disturbance less clear. However, in many aeroacoustic
applications the frequencies of interest are high and the coupling between acoustic
and vorticity disturbances is weak. As a result, the disturbances can be treated
independently (Atassi 2003) to calculate the propagation of waves in constant area
ducts. The analysis can be extended, using the method of multiple scales, to slowly
varying cross-sections (Cooper & Peake 2001, 2005; Rienstra 1999; Rienstra &
Eversman 2003).

Combustion instabilities occur at low frequencies and are characterized by non-
isentropic flow due to heat addition. Previous work motivated by combustion instabil-
ity has focused on problems where the mean flow varies rapidly in the axial direction
and the disturbances have long wavelengths relative to the mean-flow variation. In
this limit, the mean flow can be treated as uniform upstream and downstream of
the zone of rapid variation separated by jump conditions which connect the mean
flows in the two regions. The unsteady problem then is to determine the reflection
and transmission of disturbances across the discontinuities (Marble & Candel 1977;
Stow, Dowling & Hynes 2002). However, when the hub–tip ratio of the duct is not
close to unity, the mean flow exhibits significant variation from hub to tip and both
the mean-flow variation and the wavelengths of the incident waves scale with the
mean radius of the duct. In this limit, the mean-flow gradients are expected to alter
significantly the evolution of the incident vortical and entropic waves.

Owing to the large gradients in entropy that often occur in applications, nonlinear
effects are also expected to be important. Recent work has examined nonlinear
effects in the propagation of entropy waves in a region with axial entropy gradients
(Lin & Szeri 2001; Tyagi & Sujith 2003; Soukhomlinov et al. 2002). These works
show the classical (Whitham 1974) steepening of waves resulting from the amplitude
dependence of the wave speed that occurs when the waves have finite amplitude.

In the present paper, we examine the propagation and stability of vorticity–entropy
waves. We first investigate small-amplitude disturbances, which are modelled by the
linearized Euler equations, to examine the coupling between the vortical and entropic
modes. We then solve the nonlinear Euler equations to study the stability and
evolution of the vorticity and entropy waves in a non-isentropic flow. The objective
of the paper is to examine (i) the coupling between vortical and entropic waves in
a non-uniform flow, (ii) the effect of temperature gradients on the stability of the
disturbances and (iii) nonlinear effects on the development of vorticity and entropy
waves.

In § 2, we present the mathematical formulation of the problem, which is governed
by the nonlinear Euler equations. In § 3, we linearize the Euler equations about an
axisymmetric radially varying mean flow. We then examine solutions to the linearized
problem to gain some insight into the effects of the mean-flow gradients on the
evolution of the disturbances. In § 4, we solve the nonlinear equations numerically
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and compute the evolution of incident vortical and entropic waves. We also examine
how the solutions deviate from the linear results given in § 3. In § 5, conclusions are
presented.

2. Mathematical formulation
The mean flow is non-uniform in both temperature and velocity, owing to non-

uniform heating and wake defects from upstream structures and flow separation. The
unsteady flow is characterized by a dominant angular frequency. We assume that the
flow quantities are given at an axial cross-section, x = xi , downstream of which viscous
effects, heat conduction and heat addition are negligible. In general, the system is
governed by the Euler equations in a volume V bounded by a surface ∂V , which are
expressed in conservation form as

∂

∂t

∫
V

Wi dΩ +

∫
∂V

F C
ij nj dΓ = 0, (2.1)

where nj is the unit normal of the surface ∂V the vector, Wi and tensor F C
ij are

the conservation variables and convective fluxes for mass, momentum and energy,
respectively. These are given explicitly as

Wi = [ρ ρu ρv ρw E]T ,

Fij = [ρuj pδ1j + ρuuj pδ2j + ρvuj pδ3j + ρwuj (E + p)uj ]
T ,

}

where ρ is the density, uj = [u v w]T are the Cartesian coordinates of the velocity field,
Fij is the j th column of the 5 × 3 matrix F C

ij , p is the pressure and E = ρ(cvT + v2/2)
is the total energy, with temperature T and specific heat at constant volume cv . The
scheme for solving (2.1) is second-order accurate with a MacCormack time-stepping
procedure and uses an artificial dissipation procedure in the vicinity of shocks, as
described in Jameson, Schmidt & Turkel (1981).

The geometry is an annular duct whose inner and outer radii are r = rh and r = rt ,
respectively. Thus at the surfaces of the duct, r = rh or r = rt , and at any solid bodies
which lie in the computational domain the impermeability condition

ujnj = 0 (2.2)

is locally applied.
We assume that the flow can be locally modelled by the linearized Euler equations

near the inflow boundary to represent the incident disturbances and we similarly
use a linear convection condition at the outflow boundary. The approach of locally
linearizing the equations to impose inflow–outflow boundary conditions has been used
successfully in the Euler equations to compute the propagation of acoustic, vortical
and entropic waves and the scattering of incident vortical waves by a cascade (Atassi,
O. V. & Galan 2005) where the mean flow is uniform near the boundaries. In an
isentropic but non-uniform mean flow, inflow–outflow conditions have been derived
for the linearized Euler equations in the frequency domain using results obtained
from an eigenmode analysis (Atassi, H. M. et al. 2004). The results show that the
pressure field associated with the nearly convected vortical modes is small. On the
basis of this observation, they derived an inflow condition for the vortically dominated
disturbances.

Although numerical solutions to (2.1) are presented in § 4, to gain insight into the
general solutions we first examine linear solutions to the Euler equations perturbed
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about a non-uniform mean flow. The linear results are presented in § 3 and provide
guidance for the numerical cases examined in § 4.

3. Linear analysis
In this section, we examine the propagation of small-amplitude perturbations in a

constant-area annular duct with a non-uniform non-isentropic mean flow to assess
(i) the effect of mean-temperature gradients on the solutions and (ii) the parameter
space for nonlinear calculations.

We assume that the flow is governed by small perturbations to a non-uniform mean
flow and therefore expand the flow quantities as follows:

U(x, t) = U(x) + u(x, t), (3.1)

p(x, t) = p0(x) + p′(x, t), (3.2)

ρ(x, t) = ρ0(x) + ρ ′(x, t), (3.3)

where x stands for the position vector, t for time, and U , p0, ρ0 are the steady mean
velocity, pressure and density, respectively. The corresponding unsteady perturbation
quantities u, p′, ρ ′ are such that |u(x, t)| � |U(x)|, |p′(x, t)| � p0(x) and |ρ ′(x, t)| �
ρ0(x).

3.1. Axisymmetric mean flow

Owing to temperature variations in the flow, the mean density is non-uniform and
solely depends on the radial distance r:

ρ0(x) = ρ0(r). (3.4)

The mean flow U(x) is assumed to be axisymmetric and of the form

U(x) = Ux(r)ex, (3.5)

where Ux is the mean-velocity component in the axial direction and ex represents the
unit vector in the axial direction. Note that a consequence of (3.5) is that the mean
flow is divergence free. The mean vorticity is given by

ζ = ∇ × U = −dUx

dr
eθ (3.6)

where eθ represents the unit vector in the azimuthal direction. While, in general, any
pressure variations are due to the presence of swirl (circulation) and are governed by

dp0

dr
= ρ0

U 2
θ

r
, (3.7)

for the case of zero mean swirl, which we consider in this paper, the mean pressure
is constant throughout the domain, p0(x) = p0. The total mean enthalpy H0 can be
expressed in terms of the density and velocity using Crocco’s relation,

dH0

dr
= −

(
1

(γ − 1)ρ2
0

dρ0

dr
+ Uxζθ

)
, (3.8)

where γ is the ratio of specific heats. Note that (3.8) suggests that non-uniform
density gradients can generate mean vorticity except when the changes in density are
exactly balanced by the changes in total enthalpy.

We non-dimensionalize all lengths with respect to the mean radius rm, all velocities
with respect to the speed of sound c0m and the density with respect to ρ0m, where the
subscript m refers to conditions at r = rm.



Vorticity–entropy waves in a non-uniform flow 153

3.2. Perturbation equations

The small-amplitude fluctuations are governed by the linearized Euler equations,

D0

Dt
ρ ′ + ρ0∇ · u +

dρ0

dr
ur = 0, (3.9)

ρ0

(
D0

Dt
ux + ur

dMx(r)

dr

)
= −∂p′

∂x
(3.10)

ρ0

(
D0

Dt
ur

)
= −∂p′

∂r
(3.11)

ρ0

(
D0

Dt
uθ

)
= − ∂p′

r∂θ
(3.12)

D0

Dt
p′ + ∇ · u = 0, (3.13)

where ρ ′, ux, ur, uθ , p
′ are the perturbation density, axial velocity, radial velocity,

tangential velocity and pressure, respectively, D0/Dt ≡ ∂/∂t + Mx∂/∂x and Mx = Ux/

c0m. Also, we recall that the mean pressure is assumed constant, with non-dimensional
value equal to 1/γ . In this section, we examine solutions to (3.9)–(3.13) to clarify the
effects of the mean flow and suggest inflow conditions of interest for the nonlinear
calculations.

3.2.1. Modal analysis

A simple class of solutions to the linearized Euler equations may be obtained in
terms of eigenmodes. These eigenmode solutions display the different types of
disturbances which exist and their characteristics. They are also useful for formulating
inflow–outflow conditions (Atassi & Ali 2002; Atassi 2004) and studying the coupling
of the modes (Atassi 2003) and their stability. The following Fourier expansion is
assumed:

{ρ ′, ux, ur, uθ , p
′}(x, r, θ; t)

=

∫ ∞

−∞

∞∑
m=−∞

∞∑
n=1

{ρmn, Xmn(r), Rmn(r), Tmn(r), pmn(r)}ei(−ωt+mθ+kmnx) dω, (3.14)

where m and n are integer modal numbers characterizing the circumferential and
radial eigenmodes, respectively. The input parameters are the reduced frequency,
ω =Ωrm/c0m and the circumferential mode number m. Since the equations are
linear, each Fourier component can be considered separately. Substituting (3.14)
into the linearized Euler equations gives a coupled system of equations governing the
eigenmodes,

Λmnρmn − 1

r

d

dr
[(ρ0r)(iRmn)] + ρ0

(
m

r
Tmn + kmnXmn

)
= 0, (3.15)

ρ0

(
ΛmnXmn − dMx

dr
iRmn

)
+ kmnpmn = 0, (3.16)

ρ0ΛmnTmn +
m

r
pmn = 0, (3.17)

ρ0(ΛmniRmn) +
dpmn

dr
= 0, (3.18)

Λmnpmn +
m

r
Tmn + kmnXmn − i

1

r

d

dr
(rRmn) = 0, (3.19)
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where the convective eigenvalue Λmn is defined by the expression

Λmn = −ω + kmnMx. (3.20)

The boundary condition at the hub and tip radii is

Rmn(r) = 0. (3.21)

The acoustic, vortical and entropic modes are coupled to each other through the
mean-flow and density gradients. Discretizing the equations leads to an algebraic
system of equations of the form

[A]z = kmn[B]z, (3.22)

where [A] and [B] are real matrices resulting from (3.15)–(3.19) and z is an eigenvector
representing the eigenfunctions ρmn, Xmn, Tmn, iRmn and pmn. Solutions to (3.22) are
obtained using the spectral method described in Golubev & Atassi (1998).

We first study the modal equations (3.15)–(3.19) to see whether there are pressure-
free solutions which can be obtained without resorting to numerical methods. These
solutions when expressed in terms of Fourier modes with a constant kc

mn will restrict
the value of r to rc, for which Λmn = 0. The weak solutions are

pmn = 0, (3.23)

Rmn = 0, (3.24)

Xmn = − m

rckc
mn

Tmn, (3.25)

Tmn = Amnδ(r − rc), (3.26)

ρmn = Bmnδ(r − rc), (3.27)

where kc
mn = ω/Mx(rc) and δ(r − rc) is the Dirac delta function. Note that rc will be

in the interval, defined by Λmn = 0 for the given velocity profile, between hub and
tip. Note also that the relationship between Xmn and Tmn implies that the solution is
divergence free and ρmn is independent of the velocity. A superposition of the weak
solutions (3.25)–(3.27) at the different radial locations of the duct yields

{Xmn, Tmn, ρmn} =

∫ rt

rh

{
f X

mn(rc), f
T
mn(rc), f

ρ
mn(rc)

}
δ(r − rc)e

i(kc
mnx−ωt+mθ) drc (3.28)

or

{Xmn, Tmn, ρmn} =
{
f X

mn(r), f
T
mn(r), f

ρ
mn(r)

}
ei(αmn(r)x−ωt+mθ) (3.29)

where αmn(r) = ω/Mx(r). Equation (3.29) represents a special family of solutions which
purely convect with the mean flow velocity. Note that for uniform mean flows such
purely convected solutions always exist (Kovàsnznay 1953).

If Rmn �= 0 and dMx/dr �= 0 then (3.16)–(3.19) show that it is not possible to find a
pressure-free, pmn =0, solution. However, for dMx/dr = 0, and Rmn �= 0, (3.15)–(3.19)
show that it is possible to find pressure-free purely convected solutions for the velocity,
(Xmn, Rmn, Tmn). Multiplying (3.19) by ρ0 and subtracting it from (3.15) gives

Λmnρmn = i
dρ0

dr
Rmn. (3.30)

Since Rmn is different from zero, (3.30) shows that, as Λmn → 0, ρmn must be singular
at every point. This non-local non-integrable singular behaviour is in contrast with
the solutions (3.23)–(3.27), which have a local and integrable singularity because Rmn
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is equal to zero. This non-local non-integrable behaviour suggests an instability for
the density. In § 3.3, we examine and demonstrate the existence of growing solutions
for the density in the special case dMx/dr = 0.

In the general case, dMx/dr �= 0 and dρ0/dr �= 0, an unsteady pressure field is
produced by the mean-flow gradients. To better understand the pressure field of
the convected modes, (3.15)–(3.19) can be reduced to a generalized Pridmore–Brown
equation (Vilenski & Rienstra 2005),

d2pmn

dr2
+

(
1

r
− 2kmndMx/dr

Λmn

− d(log ρ0)

dr

)
dpmn

dr
+

(
Λ2

mnρ0 − k2
mn − m2

r2

)
pmn = 0,

(3.31)

where

dpmn

dr
= 0, r = rh, rt .

The two terms in (3.31) involving the mean density distinguish this equation from
the conventional Pridmore–Brown equation derived for incompressible flow. The
convective modes propagate with a phase speed close to that of the mean-flow speed
Mx(r), so the convective eigenvalue Λmn must be small for some radial position r .
As a result, for moderate density gradients the term 2kmnΛ

−1
mndMx/dr should be large

compared with the mean density gradient, d log(ρ0)/dr , and thus it should characterize
the stability of the solution.† In this case, the pressure field should be similar to the
conventional Pridmore–Brown equation derived for incompressible parallel shear
flows. The necessary condition for the stability of parallel shear flows is that the mean
flow has an inflection point (Drazin & Reid 1984) and so the characteristics of the
mean flow-velocity profile should play an important role in these instabilities.

In what follows, we compute numerical solutions for the modal equations. We
consider reduced frequencies and azimuthal wavenumbers of order one. In this para-
meter space, the coupling between mean-flow gradients and unsteady perturbations
may be strong and we examine the stability of the modes to see what effect the mean-
temperature and velocity gradients have on the growth and decay of the disturbances.

We consider mean-density gradients caused by a non-uniform Gaussian temperature
distribution which is hottest at the mean radius of the duct. The assumed density
variation is

ρ0(r) = 1 + ∆

[
1 − exp

(
− (r − 1)2

σ 2

)]
, (3.32)

where ∆ and σ are constants corresponding to the amplitude and the width of the
radial density non-uniformity, respectively.

We take the axial-velocity radial profile to be such that ρ0Mx = K is constant, i.e.

Mx(r) =
K

1 + ∆[1 − exp(−(r − 1)2/σ 2)]
. (3.33)

Thus, the axial velocity is not uniform and the mean flow contains vorticity in the
azimuthal direction, (3.6). Figure 1(a, b) shows the non-dimensional mean velocity
and density for ρ0Mx = 0.2934, ∆ = 0.1875 and σ = 0.21. Figure 1(c, d) shows the
non-dimensional mean velocity and density for a medium Mach number case, which
satisfies ρ0Mx = 0.492. Note that the mean density profile is identical to that in

† This argument was suggested by an anonymous referee.
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Figure 1. (a, b) Non-dimensional mean flow versus non-dimensional duct radius for a
low-mach-number case: (a) axial velocity and (b) density. (c, d) As (a, b) but for a
medium-mach-number case.

figure 1(b). The density and axial velocity change by nearly 20 per cent from the
mean radius to the duct walls. The static pressure is constant from hub to tip. In
order to examine the effect of the mean-density gradient, we also consider a case
with a constant mean density and the same velocity distribution as that defined in
(3.33), taking K = 0.2934, ∆ =0.1875 and σ = 0.21. We calculate the eigenmodes for
an annular duct with hub–tip ratio 0.3, reduced frequency ω = 1.0, circumferential
wavenumber m = 1 and with the mean flow given in (3.32), (3.33) and shown in figure
1(a, b).

For a constant mean density, (3.15)–(3.19) have three possible families of solutions:
(i) purely convected delta-type solutions as in (3.23)–(3.27) with Bmn = 0; (ii) solutions
that are hydrodynamically unstable owing due to the presence of inflection points
(Drazin & Reid 1984) in the velocity profile (3.33); and (iii) stable solutions with
non-zero pressure governed by the conventional Pridmore–Brown equation.

For a non-uniform density gradient, our previous analysis of the modal equations
(3.15)–(3.19) suggests that there are again three possible families of solutions: (i)
purely convected delta-type solutions as in (3.23)–(3.27); (ii) solutions that are
hydrodynamically unstable owing to the presence of inflection points in the the
velocity profile (3.33) which, except for the density eigenfunction, for the low Mach
numbers considered should be practically independent of the mean-density profile;
and (iii) stable solutions with non-zero pressure governed by the generalized Pridmore–
Brown equation (3.31). Note that the effects of the mean-density profile on the density
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Figure 2. The eigenmodes which lie in the continuous spectrum 3.4 < kmn < 4.1 for the
mean-flow profiles given in figure 1(a, b). The vertical and horizontal axes represent the
imaginary and real parts of the axial wavenumber in the complex plane. The reduced frequency
ωrm/cm is 1 and the circumferential wavenumber m is 1.

eigenfunction will be examined in more detail in the context of the full linearized
equations, in particular, by solving the full nonlinear Euler equations numerically since
these effects cannot be obtained by solution of the modal equations (3.15)–(3.19).

3.2.2. Numerical modal solutions

Figure 2 shows the distribution of mode spectra corresponding to the mean flow in
figure 1(a, b), in terms of the wavenumber kmn in the complex plane. The modes whose
imaginary wavenumber is zero correspond to the purely convected modes and form the
continuous spectrum whose eigenvalues extend from ω/ max Mx < kmn <ω/ min Mx .
Note that there are two unstable modes. The complex wavenumbers of the unstable
modes with the mean-flow profile shown in figure 1(a) are kmn = (3.807, −0.118) and
kmn = (3.65, −0.029). As noted above, these unstable modes are associated with the
inflection points in the velocity profile and are nearly independent of the density
profile. If we make the density uniform, the eigenvalues of the two unstable modes
become kmn =(3.794, −0.122) and kmn = (3.63, −0.029) respectively. Furthermore, if we
change the mean-velocity profile from a Gaussian to a parabolic profile, i.e. a velocity
profile that does not have an inflection point, the unstable modes disappear. Increasing
the Mach number, as in figure 1(c) but maintaining the Gaussian profile, alters the
wavenumber but two unstable modes are still present. Figure 3 shows the eigenfunc-
tions of one of the neutrally stable modes lying in the continuous spectrum. The solu-
tion corresponds to the delta-function-type solutions found analytically in the previous
section. Although a delta-type solution is difficult to capture numerically, our numer-
ical scheme is accurate enough to resolve them, as shown in figure 3. The left-hand
panel shows all three components of the velocity and the pressure while the right-hand
panel shows the density. As expected, the purely convected mode is zero everywhere
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Figure 3. (a) The eigenfunctions for one of the modes in the continuous spectrum vs. the
radius. The axial and tangential eigenfunctions are each non-zero at a single point. They
are purely convected at this radial location. The tangential and axial wavenumbers are
m= 1, kmn = 3.832, and the axial and tangential velocities satisfy the divergence-free condition.
The pressure and radial eigenfunctions are zero. (b) The density eigenfunction.

except at a single radius, the critical radius r = rc. Here the numerical solution shows a
singular, delta-function-type, solution in agreement with the analytical solution given
in (3.23)–(3.27). Note that ux and uθ are connected by the divergence-free condition.
Observe that the mode lies at r = rc = 1.224 with axial wavenumber kmn = 3.832 and
that the relationship between the axial and tangential velocities satisfy ∇ · u = 0 or

Tmn = −kmnrc

m
Xmn.

Precisely, the numerical results give Xmn = −0.1706 and Tmn = 0.8, which satisfy the
divergence-free condition. The radial velocity and pressure are identically zero, also
in agreement with the analytical results.

Another set of modes which lie in the continuous spectrum are the entropy modes.
These modes have zero velocity and pressure and are associated with pure density
fluctuations. They lie in the continuous spectrum with zero imaginary part, indicating
that all the entropy modes are neutrally stable. Again, the eigenfunction of the purely
convected mode is zero everywhere except at the critical radius r = rc where the
numerical solution shows a singular delta-function-type solution in agreement with
the analytical solution given in (3.27). The entropy modes contain a spectrum with
phase velocity equal to the local mean velocity, like the velocity modes shown in
figure 2. Thus without examining the eigenfunctions it is difficult to distinguish the
entropy-dominated and vorticity-dominated modes.

In figure 4, we plot the complex eigenfunctions of the most unstable mode for
both a uniform and a non-uniform density profile, with the mean-velocity profile
shown in figure 1(a). The dashed lines correspond to the eigenfunctions for a mean
flow without mean-density gradients and the solid lines denote the eigenfunctions
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Figure 4. The real and imaginary parts of the eigenfunctions corresponding to the most
unstable mode for two different mean flows. The eigenfunctions denoted by solid lines
correspond to the eigenfunction for the mean velocity given in figure 1(a) and the density
profile given in figure 1(b). The eigenfunctions denoted by the dashed lines are the solution
associated with the constant mean-density profile. The largest difference between the two
solutions is visible in the density, which is much larger for the nonzero-density-gradient case
than for the zero-density-gradient case.

for a mean flow with density gradients. The difference between the eigenfunctions is
very small except for the density eigenfunction, which is plotted in the fifth row: the
density eigenfunction for the non-uniform-density case is very large compared with the
pressure perturbation while the uniform-density case has a density eigenfunction which
is equal to the pressure eigenfunction. The reason is that the density eigenfunction is
inversely proportional to Λmn, which lies between 0.1 and 0.2 for the unstable mode.
The velocity field shown in figure 4 shows that all three velocity components of the
unstable mode are significant.

The instability behaviour of the two unstable modes in figure 2 depends strongly
on the circumferential wavenumbers. For larger circumferential modes, m =8, a much
smaller growth rate for the most unstable mode occurs, and if we further increase
the circumferential wavenumber to m =10 then no unstable modes occur, suggesting
that the hydrodynamic exponential instability is stabilized by larger circumferential
wavenumbers.

3.3. Algebraically growing pressure-free solutions due to mean-density gradients

In this section, we derive axially evolving pressure-free solutions and distinguish the
effect of the density gradients from those of the velocity gradients by considering
a mean flow with uniform velocity. When the mean flow velocity is uniform, the
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linearized equations (3.9)–(3.13) reduce to

D0

Dt
ρ ′ + ρ0∇ · u +

dρ0

dr
ur = 0, (3.34)

D0

Dt
u = −∇p′

ρ0

, (3.35)

D0

Dt
p′ + ∇ · u = 0. (3.36)

Note that (3.35), (3.36) are independent of ρ ′; however, ρ ′, governed by (3.34), depends
on u. Equations (3.35), (3.36) have the following solution:

p′ = 0, (3.37)

u = u(x − Mxtex, r, θ), (3.38)

with the condition that the disturbance velocity is solenoidal. Note that if we impose
a divergence-free u at the inlet (x0, t0) then the velocity u defined by (3.38) will always
be solenoidal. Thus, (3.34) reduces to

D0

Dt
ρ ′ +

dρ0

dr
ur (x − Mxtex, r, θ) = 0. (3.39)

This equation can be readily integrated and has the solution

ρ ′ = ρ∗(x − Uxtex, r, θ) − x

Mx

dρ0

dr
ur (x − Mxtex, r, θ). (3.40)

This case clearly shows that it is possible to have an algebraically growing density
fluctuation driven by the density gradients in the flow. The velocity field, however,
convects independently of the density downstream, with the uniform flow without
growth in its amplitude.

The above solution shows a linear growth in the density perturbation due to
coupling between the mean-density gradient and the radial-velocity perturbation as
the wave propagates downstream. Algebraic growth in time due to the interaction
of mean-flow gradients with a time-independent transverse-velocity perturbation has
been conjectured to be important in the formation of long streaky structures in turbu-
lent shear flows (Landahl 1980). In this case, the evolution of the initial disturbances
in time was studied. Ellingsen & Palm (1975) and, later, Hanifi & Henningson (1998)
concluded that perturbations which are independent of the streamwise coordinate x

will increase linearly with time. Landahl (1980) extended the results of Ellingsen &
Palm and showed that initial conditions lead to a growth in the kinetic energy in time
associated with the linear growth in time of the streamwise extent of the disturbance.
This occurs even when the disturbance velocities do not grow.

4. Nonlinear evolution of incident vortical and entropic disturbances
In this section, we compute the nonlinear evolution and examine the stability of

various incident disturbances. We look first at the effect of the mean-flow gradients
and the form of the incident disturbance on the propagation of the vortical and
entropic disturbances to see whether the calculations are consistent with the linear
analysis. Then we increase the amplitude of the inlet excitation to see how nonlinear
effects alter the propagation of the incident time-harmonic waves.



Vorticity–entropy waves in a non-uniform flow 161

4.1. Incident disturbance representation

In what follows, we present the incident disturbance representation at the inlet of the
computational domain. To highlight the effect of the density gradients on the solution,
we follow the disturbance representation given in Atassi, H. M. et al. (2004) for time-
harmonic vortical disturbances in a non-uniform flow. In that work, the authors
modelled the interaction of wakes shed from a fan with structural struts, using
the isentropic linearized Euler equations. Based on the Fourier decomposition of fan
wakes from Reynolds-averaged Navier–Stokes calculations, the authors observed that
the axial pressure gradient and density of the wake harmonics are small compared
with the velocity fluctuations. They then eliminated the axial derivatives from the
axial-velocity to obtain a relationship between the axial-velocity perturbation and the
radial- and circumferential-velocity perturbations, which were given. Although the
current paper solves the nonlinear Euler equations, we locally linearize at the inflow
boundary and thus we can use the incident-vortical-wave representation based on the
linearized Euler equations. We briefly give details of the inflow representation below.

Linearizing the energy and axial-momentum equations we obtain

∇ · u = −D0p
′

Dt
, (4.1)

D0

Dt
ux + ur

dMx(r)

dr
= − 1

ρ0

∂p′

∂x
. (4.2)

We impose a vortical disturbance for which uθ = u
(v)
θ and ur = u(v)

r are assumed known
and ∂p(v)′

/∂x and D0p
(v)′

/Dt are small. Then multiplying (4.1) by Mx , we eliminate
∂u(v)

x /∂x by subtracting the linearized continuity equation from the x-momentum
equation and obtain

∂u(v)
x

∂t
− M2

x

r

∂

∂r

(
ru(v)

r

Mx

)
− Mx

r

∂u
(v)
θ

∂θ
= 0. (4.3)

Note that this expression reduces to that given in Atassi, H. M. et al. (2004) in the
limit of zero mean swirl. Thus, by specifying the tangential and radial components of
the velocity we can specify incident vortical disturbances.

Owing to the periodicity of the problem in θ we can, without loss of generality,
expand the inlet velocity and density in terms of a Fourier series,

u =

mg=+∞∑
mg=−∞

ûmg
(xi, r) ei(mgθ−ωt), (4.4)

ρ ′ =

mg=+∞∑
mg=−∞

ρmg
(xi, r) ei(mgθ−ωt). (4.5)

Note that the radial velocity ûrmg
(r) must satisfy the impermeability condition at

the hub and the tip.

4.2. Outflow boundary condition

At the outflow boundary, we again locally linearize and write non-reflecting boundary
conditions for the perturbation pressure, as in Atassi, O. V. & Galan (2005), and the
axial velocity not induced by the acoustic pressure field is given by the pure-convection
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condition,

Du(v)
x

Dt
= 0. (4.6)

4.3. Numerical results: evolution of entropically and vortically dominated disturbances

In this section, we solve the Euler equations to examine the effect of (i) the mean-
flow profile, (ii) the azimuthal wavenumber and (iii) the initial amplitude of the
disturbance on the evolution of incident vortical disturbances. We first consider two
simple validation cases: a pure density fluctuation and a vortical disturbance with a
uniform mean velocity but non-uniform density profile. In the first case the velocity
perturbation is zero, so no coupling between the velocity and density fluctuation
occurs and a simple purely convected solution for the density perturbation exists
and in the second case, an analytic solution showing algebraic growth in the density
fluctuation was derived in § 3.3. We then consider a vortical excitation with non-
uniform density and velocity profiles for which coupling between both the velocity
and the density fluctuations occurs and examine the effect of azimuthal wavenumber
on the disturbance evolution. While eigenmode solutions were given for a non-uniform
mean velocity and density profile in § 3.2, in what follows we solve the nonlinear Euler
equations as an initial-value problem. These solutions should highlight the limitations
of solving the eigenvalue problem. For example, owing to the complexity of the
mean flow the eigenvalue problem is not Sturm–Liouville and so completeness of the
solutions cannot be proven. Moreover, owing to the assumed form of the eigenmode
solution with constant axial wavenumber a continuous spectrum of modes exists in
the eigenmode solution.

In what follows, we consider reduced frequencies equal to unity in a constant-
area annular duct with hub–tip ratio 0.3 and the mean velocity and density given
in figure 1(c, d). Recall that the eigenmode analysis in the low-frequency regime of
interest, ωrm/c0m = 1, showed that the most unstable modes occur for small azimuthal
wavenumbers. This is expected because in this parameter space the wavelength of
the incident disturbances is of the order of the mean radius of the duct. As a result,
the disturbances vary on the same scale as the mean flow and the strongest coupling
between the mean-flow gradients and the disturbances is expected to occur.

4.3.1. Evolution of an entropic wave

The incident-density fluctuation at the inlet of the computational domain is given
by

ρ ′ = a exp[i(mθ − ωt)], (4.7)

with non-dimensional amplitude a = 1×10−3, circumferential wavenumber m = 1 and
zero velocity and pressure perturbation. This problem has the analytic solution

ρ ′ = a exp

[
i

(
ω

Mx(r)
x + mθ − ωt

)]
,

u = 0,

p′ = 0.

⎫⎪⎪⎬
⎪⎪⎭

(4.8)

Owing to the difference in Mach number across the radius of the duct, lines of
constant phase will have a Gaussian shape like that of the mean flow and the axial
shift between the hub of the duct and the mean radius, where the Mach number is a
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Figure 5. Contours of constant-density fluctuation are shown for a constant-θ or (x, r)-plane
of the duct at an instant in time. The dimensionless frequency of the excitation is ωrm/c0 = 1.0
and the circumferential wavenumber is m= 1. The hub–tip ratio of the duct is 0.3.

maximum, is given by

δx =
Mx(rm) − Mx(rh)

Mx(rm)
x = 0.185x,

where x =0 is the inlet of the computational domain. In figure 5, we see a plot of
the density perturbation at an instant in time where the solution has converged to a
periodic solution with the same reduced frequency as the inlet excitation, ω. Near the
centreline, the wave propagates with a wavelength λ equal to U/f where f =ω/(2π)
is the frequency of the inlet excitation and U is the local axial velocity, which varies
from hub to tip. Although the inlet excitation does not vary radially, the disturbance
shows significant radial variation near the exit of the computational domain. As
expected this results because the wave propagates with the local mean axial velocity,
which is largest at the centreline of the duct. To compare the numerical solution
and the analytical solution, the axial variation of a line of constant phase at three
different locations is marked on figure 5 at r = 0.32, 0.65, 0.98 by a star symbol, using
the exact solution given above. Excellent agreement between the numerical results
and the exact solution is shown. The amplitude of the wave remains constant as the
entropy disturbance convects downstream and the velocity and pressure components
remain near zero, suggesting, also in agreement with the eigenmode results, that the
coupling between entropy and vorticity is negligible when the radial velocity is zero
and that the wave is neutrally stable.

4.3.2. Evolution of entropic and vorticity disturbances in a flow with uniform velocity

In this subsection, we assume a uniform mean-velocity profile with a radially
varying mean-density profile as in figure 1(d). We then compare our results with the
exact solution, (3.40), which shows that even without gradients in the mean-velocity
profile the density perturbation grows linearly as it propagates downstream.
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Figure 6. Contours of constant-density fluctuation are shown for a constant-θ or (x, r)-plane
of the duct at an instant in time. The dimensionless frequency of the excitation is ωrm/c0 = 1.0
and the circumferential wavenumber is m= 1. The hub–tip ratio of the duct is 0.3. The mean
flow velocity is uniform and the density profile is given in figure 1(d).

The vortically dominated time-harmonic disturbance at the inlet has tangential and
radial velocity components given by

uθ = aMx exp[i(mθ − ωt)]

ur =
a

2
sin

(
π

r − rh

rt − rh

)
exp[i(mθ − ωt)].

⎫⎬
⎭ (4.9)

The axial velocity is given by (4.3). The pressure perturbation is zero and the
density fluctuation, which is small, is produced by the mean-density gradients and the
disturbance radial-velocity field. The amplitude is a = 1 × 10−3, the reduced frequency
is ω = 1 and the azimuthal order is m =1.

Figure 6 shows a contour plot of the density fluctuation in the (x, r)-plane. As
the wave propagates into the domain, the amplitude of the contours of constant
density increases markedly in the mid-radius region where the density gradients are
the largest. Close to the hub and tip of the duct, where the mean-density gradients are
small, the amplitude of the density fluctuations is also small. The growing oscillations
are nearly antisymmetric with respect to the mean radius of the duct. Recall that the
mean radius is the location where the mean slope of the mean density changes from
positive to negative.

For a better comparison of the numerical results and the linear theory, in figure 7
we show the evolution of the density with a line plot at the radial locations r = 0.55
and r = 0.75. Figure 7(a) shows the real part of the density as a function of x at an
instant in time. The solid lines comprising the wave envelope reveal the linear change
in amplitude that occurs as the wave propagates downstream, in agreement with the
analytical results of § 3.3. In this case, the density fluctuations are coupled to the
velocity field by the radial velocity and the mean-density gradients, but the velocity
fluctuations are independent of the density profile since the mean velocity is uniform
and the perturbation velocity is divergence free. Figure 7(b) shows the amplitude
of the density as a function of x for r = 0.75. The solid line denotes the analytical



Vorticity–entropy waves in a non-uniform flow 165

0 1 2 3 4 5 6
–0.015

–0.010

–0.005

0

0.005

0.010

0.015
(a)

(b)

ρ′

r = 0.57
r = 0.76

0 1 2 3 4 5 6

0.005

0.010

0.015

x

|ρ′|

Numerical
Analytical

Figure 7. (a) A line plot of the density fluctuation as it propagates down the duct. The plot
is shown at two radial locations, r =0.55 and r =0.75, at a constant-θ location of the duct
at an instant in time. The dimensionless frequency of the excitation is ωrm/c0 = 1.0 and the
circumferential wavenumber is m= 1. The hub–tip ratio of the duct is 0.3. The mean flow
velocity is uniform and the density profile is given in figure 1(d). (b) The amplitude of the wave
vs. the analytical solution. The solid and dashed lines show the linear increase in amplitude
from the analytical and numerical solutions, respectively, as the density fluctuation evolves
downstream.

solution in (3.40) and the dashed line denotes the numerical solution. Again good
agreement exists between the numerical and analytical solutions.

4.3.3. Evolution of vorticity disturbances: effect of azimuthal wavenumber

In this section, we revisit the mean flow shown in figure 1(c). Recall that the density
is radially non-uniform with a Gaussian profile and that the mean velocity is also
non-uniform with an inflection point and is chosen such that ρ0Mx is constant. In
what follows, we present numerical solutions of the Euler equations for incident
disturbances with various azimuthal wavenumbers m = 1, 8, 10. Recall that for m =1
there were two exponentially unstable modes while for m =8 there was one exponen-
tially unstable mode with a much smaller growth rate. The m =10 case was found to
be stable by the eigenmode analysis given in § 3.2.2.

The inlet excitation is a vortically–dominated disturbance with tangential and radial
velocity components given by

uθ = aMx(r) exp[i(mθ − ωt)],

ur =
a

2
sin

[
π

(
r − rh

rt − rh

)]
exp[i(mθ − ωt)].

⎫⎬
⎭ (4.10)

The axial velocity and the density field produced by the mean-density gradients and
the radial velocity field are given by (4.3). The amplitude is a =1 × 10−3, the reduced
frequency is ω =1 and the azimuthal order is m =1. For this azimuthal wavenumber,
on the basis of the linear analysis we expect both algebraic and exponential instabilities
to occur. In order to distinguish the type of instability, exponential or algebraic, we
extend the computational domain to x = (0, 12).



166 O. V. Atassi

0.008

0.008

0.012

0.012

0.008

0.008

0.008

0.004

0.008

0.004

0.004

0.004

0.004

0.004

0.004

0

0

0.008

0.008
0.012

0.016

0.012

0.008

0.012

0.008

0.008

0.008

0.004

0.008

0.004

0.004

0.004

0.004

0.004

0.004

0

0

x

r

0

0

–0.004

0.004

–0.004

0.004

–0.004

0.004

0.008

–0.004

0.008

–0.008

0.008

–0.012

–0.008

0.012

–0.016

0.012
–0.008

0.008

0 2 4 6 8 10 12

0.4

0.5

0.6

0.7

0.8

0.9

Figure 8. Contours of constant-density perturbation are shown for a constant-θ or (x, r)-plane
of the duct at an instant in time. The dimensionless frequency of the excitation is ωrm/c0 = 1.0
and the circumferential wavenumber is m= 1. The hub–tip ratio of the duct is 0.3. The mean
flow is given in figure 1(b).
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Figure 9. As figure 8 but showing contours of constant-axial-velocity perturbation.

Figures 8–10 show contours in the (x, r)-plane of the density, axial-velocity and
radial-velocity perturbations, respectively. In figure 8, the density perturbation is
nearly zero near the inlet. As the wave moves downstream, the amplitude of the
density fluctuations grows to nearly 0.02. On both sides of the mean-radius location,
positive and negative values of the density fluctuations are shown. Note that the
effect of the mean velocity is that the shape of the density contours is no longer
antisymmetric with respect to the mean-radius location. However, the scale of the
density fluctuation at x =6 is similar to that for the uniform mean-velocity case.

Figure 9 shows contours of the axial-velocity component. As the wave propagates
downstream, concentrated regions with growing amplitude develop around the
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Figure 10. As figure 8 but showing contours of constant-radial-velocity perturbation.

mean-radius location. Closer to the hub and tip of the duct, where the mean-flow
gradients are small, the growth of the waves is less visible and the wave convects
downstream with a nearly constant amplitude.

Figure 10 shows an (x, r)-plane view of the radial-velocity component. Note that
to satisfy the impermeability condition at the hub and the tip, the radial velocity goes
to zero. The radial velocity also grows by a factor of nearly 5 between the inlet and
the exit of the duct. The growth in amplitude of the incident wave and its associated
increase in kinetic energy suggest that the wave is exponentially unstable owing to
the mean-flow velocity gradient which has an inflection point in its radial profile.

To distinguish the type of growth more clearly, in figure 11 we show plots of
the density, axial-velocity and radial-velocity perturbations. Figure 11(a) shows at
an instant in time the density perturbation as it propagates downstream. The solid
and dashed curves denote the density perturbation at the constant radial locations
r = 0.55 and r = 0.75, respectively. Linear fits to the amplitude of the wave have been
made to visualize the extent to which the solution deviates from linear growth. This
shows that the growth is linear up to about x =5. Downstream of this distance, the
growth is faster than linear. Figures 11(b) and 11(c) show plots of the axial- and
radial-velocity perturbations along two lines of constant radius, r = 0.55 (solid curve)
and r = 0.75 (dashed curve). The growth is clearly not linear and an exponential fit
of the growth along the line r =0.55 is denoted by the solid envelope curve. The
growth rate of this exponential fit is 0.14. It is of interest to compare this with
the growth rate of the most unstable mode predicted by an eigenmode analysis of
the mean flow in figure 1(c, d). Since the modal analysis is scaled by the mean
radius, rm = 0.65, we rescale the imaginary part of the axial wavenumber by the tip
radius, 1/rm, and obtain a growth rate of 0.13, which is slightly lower than that
given by the numerical solution of the Euler equations. The plots show that far
enough downstream the velocity perturbations are dominated by exponential growth.
Furthermore, exponential growth in the radial velocity results in the superlinear
growth observed in the density perturbation for x > 6 and shows the effects of the
coupling between the density and velocity perturbations. We expect that, owing to
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Figure 11. (a) The density perturbation along a line of constant radius at in instant in time.
The solid curve is along r =0.55 and the dashed curve is along r = 0.75. (b) The axial-velocity
perturbation along a line of constant radius at an instant in time. The solid curve is along
r = 0.55 and the dashed curve is along r = 0.75. (c) The radial-velocity perturbation along a
line of constant radius at an instant in time. The solid curve is along r = 0.55 and the dashed
curve is along r = 0.75. The dimensionless frequency of the excitation is ωrm/c0 = 1.0 and the
circumferential wavenumber is m= 1. The hub–tip ratio of the duct is 0.3.

this coupling, sufficiently far downstream the growth in the density perturbation will
become exponential like that of the velocity perturbation.

Figures 12, 13 show the evolution of the density and axial-velocity perturbations
for the m = 8 case. The magnitude of the density contours in figure 12 show the
growth in the density perturbation as the wave propagates downstream. However,
unlike the m =1 case, the magnitude of the density is no longer nearly symmetric
about the mean radius. Instead, the magnitude of the density fluctuations are larger
above the mean radius than below it. The reason is that the asymmetric terms in
the Euler equations containing the coefficient (1/r)∂/∂θ become more significant
as m becomes larger and the radial-velocity perturbation becomes asymmetric with
respect to the mean radius. Since the radial velocity is what drives the growth of the
density, the growth in amplitude of the density becomes asymmetric. Contours of the
axial-velocity fluctuation are shown in figure 13. The amplitude of the axial velocity
increases slightly near the mean radius of the duct and the gradients in the velocity
concentrate in the 0.5 <r < 0.7 region. However, the rate of growth in the axial
velocity is diminished from the m =1 case and the growth is concentrated in a smaller
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Figure 12. Contours of constant-density perturbation are shown for a constant-θ or (x, r)-
plane of the duct at an instant in time. The dimensionless frequency of the excitation is
ωrm/c0 = 1.0 and the circumferential wavenumber is m= 8. The hub–tip ratio of the duct is
0.3.
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Figure 13. As figure 12 but showing contours of constant-axial-velocity perturbation.

radial swathe. This is in agreement with the normal-mode analysis, which found that
the hydrodynamic instability is stabilized as the azimuthal wavenumber increases.

In figures 14, 15 there are contour plots of density and axial-velocity fluctuations
with azimuthal wavenumber m =10; this case, according to the eigenmode analysis
in § 3, no longer exhibits instability. The density fluctuation shown in figure 14
grows as the wave propagates downstream, similarly to the m =8 case where the
growth is more rapid above the mean radius than below it. To understand this
asymmetry in the growth we plot the radial-velocity contours in figure 16; these play
the key role in coupling the perturbations to the mean flow. As the wave propagates
downstream, the radial velocity has its largest magnitude above the mean radius. This
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Figure 14. Contours of constant-density perturbation are shown for a constant-θ or (x, r)-
plane of the duct at an instant in time. The dimensionless frequency of the excitation is
ωrm/c0 = 1.0 and the circumferential wavenumber is m= 10. The hub–tip ratio of the duct is
0.3.
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Figure 15. As figure 14 but showing contours of constant-axial-velocity perturbation.

result illustrates the importance of the coupling between the vortical velocity and
the density perturbations since it relates the alteration in the radial-velocity to the
evolution of the density perturbation.

Figure 15 shows contours of constant axial-velocity. The axial-velocity profile
redistributes as the wave propagates downstream and shows concentrated regions at
mid-radius, where the mean-flow gradients are significant. In the mid-radius region
0.5 <r < 0.6 some growth in the contours is visible up to the axial location x = 4;
however, beyond this the amplitude of the contours does not noticeably increase. In
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Figure 16. Contours of constant-radial-velocity perturbation are shown for a constant-θ or
(x, r)-plane of the duct at an instant in time. The dimensionless frequency of the excitation is
ωrm/c0 = 1.0 and the circumferential wavenumber is m= 10. The hub–tip ratio of the duct is
0.3.

the neighbourhood of r = 0.75 the level of the contours decreases up to x = 4 and then
there is less observable change in magnitude. Overall, the amplitude of the wave does
not grow as clearly as in the low-azimuthal-wavenumber cases. This suggests that the
growth in the velocity fluctuations depends strongly on the azimuthal wavenumber
of the incident disturbance.

4.3.4. Nonlinear effects of wave propagation: amplitude dependence

In the results discussed above, the amplitudes of the incident waves were chosen
to be small so that the propagation of the disturbances was well approximated by
linear analysis. In what follows, we impose initial amplitudes of 0.005 and 0.009,
five and nine times larger than in § 4.3.3, to see whether nonlinear effects are visible
even at these relatively small initial amplitudes. Figures 17–20 show contours of the
density and axial velocity for the ‘large’ amplitude waves. As in the small-amplitude
case, a = 0.001, the disturbances propagate as unstable waves and their amplitude is
approximately five times larger at the exit of the domain. This growth occurs near
the mean radius of the duct, where the largest gradients in mean density and velocity
occur. Near the hub and tip, where the gradients become small, the amplitude of
the density fluctuation is an order of magnitude smaller than the amplitude near the
mean radius and does not change from that imposed at the inlet.

In linear problems the solutions are amplitude independent. In the general nonlinear
problem, clear differences exist between the propagation of the disturbances seen in
figures 8–10 and those seen in figures 17–20. Steepening of the wave fronts is visible
in both cases with ‘large’ amplitude excitations, as the wave propagates downstream.
This is especially visible in the larger-amplitude case, a = 0.009, shown in figures 19
and 20, where very steep gradients occur and the concentrated regions of high density
and velocity magnitude appear like shock waves as they propagate downstream.
As the amplitude is increased, this steepening is noticeable closer to the inlet and
is more pronounced. For example, in the small-amplitude case the density contours
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Figure 17. Contours of constant-density perturbation are shown for waves with amplitude
a = 0.005 for a constant-θ or (x, r)-plane of the duct at an instant in time. The dimensionless
frequency of the excitation is ωrm/c0 = 1.0 and the circumferential wavenumber is m= 1. The
hub–tip ratio of the duct is 0.3.
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Figure 18. As figure 17 but showing contours of constant-axial-velocity perturbation.

grow in nearly circular shapes near mid-radius. However, in the large-amplitude case
the contours are distorted and form a more elliptical shape, whose minor axis is in
the x-direction and whose major axis is in the radial direction. To see more clearly
the steepening in the axial direction, in figure 21 and 22 we show line plots, at a
constant radial location, of the density and axial velocity. In both figures the slope of
the wavefront steepens downstream and sharp density and axial-velocity fronts are
visible. From characteristic analysis of the one-dimensional Euler equations, it may be
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Figure 19. Contours of constant-density perturbation are shown for waves with amplitude
a = 0.008 for a constant-θ or (x, r)-plane of the duct at an instant in time. The dimensionless
frequency of the excitation is ωrm/c0 = 1.0 and the circumferential wavenumber is m= 1. The
hub–tip ratio of the duct is 0.3.
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Figure 20. As figure 19 but showing contours of constant-axial-velocity perturbation.

shown that ‘nonlinear steepening of the waves eventually leads to wave breaking’ with
multivalued solutions (Whitham 1974). Since multivalued solutions are not possible,
a shock must be formed at the location of the wavefront. However, as the slope
of the wavefront becomes very large, viscous and heat-conduction effects become
important and determine the local structure of the shock. Computational Euler
methods, like the one presented in this paper, utilize artificial dissipation to capture
the steepening wavefronts and prevent overturning (Jameson, Schmidt & Turkel
1981).
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Figure 21. A line plot of the density is shown at an instant in time. The dimensionless
frequency of the excitation is ωrm/c0 = 1.0 and the circumferential wavenumber is m= 1. The
hub–tip ratio of the duct is 0.3.
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Figure 22. A line plot of the axial-velocity perturbation at an instant in time. The dimension-
less frequency of the excitation is ωrm/c0 = 1.0 and the circumferential wavenumber is m= 1.
The hub–tip ratio of the duct is 0.3.

5. Conclusions
Vortical disturbances result whenever a fluid passes over bodies or structures and

entropy disturbances occur whenever temperature gradients exist in the mean flow
or there are heat sources such as flames. Thus, the presence of entropic and vortical
disturbances should be ubiquitous in heated internal flows. Understanding the
propagation of these convective disturbances resulting from upstream sources is
important. Radial temperature gradients couple vortical and entropic disturbances
through the radial-velocity perturbation and result in growing density fluctuations
even when the mean flow velocity is uniform. Thus, initially vortically dominated
disturbances generate significant entropy fluctuations owing to the mean-temperature
gradients. The growth in these disturbances eventually produces amplitudes large
enough to result in significant nonlinear steepening, which in turn results in large
gradients between wavefronts. Pure entropy waves without a velocity perturbation do
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not exhibit growth and coupling with the velocity field as they propagate downstream.
Instead they convect downstream with constant amplitude.

The velocity fluctuations are modified by the mean-velocity profile and the azimu-
thal wavenumber and are coupled to the entropy waves. They exhibit instabilities
when there is an inflection point in the mean-velocity profile, and the largest growth
occurs with reduced frequencies and spinning-mode orders close to unity. As these
unstable waves grow, significant nonlinear steepening occurs, which results in large
gradients between wavefronts. The growth in the velocity is affected by the azimuthal
wavenumber and, owing to the coupling between the vortical velocity and density,
the growth in the entropy waves is also altered.

Understanding the propagation of these disturbances is an important first step
towards studying how efficiently they scatter into acoustic waves in the presence of
geometrical changes, which occur in nozzles or cavities, or flames. Moreover, the
results suggest that mean flows with radial temperature gradients can destabilize
perturbations and lead to large-amplitude disturbances. This is especially noticeable
in the low-order circumferential modes, whose variations scale with the mean radius of
the duct. Since these low-order modes are often the most problematic in combustion
instabilities, we suggest that understanding the effects of the radial profiles in the
mean flow may be important in these applications.
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